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ABSTRACT 

Our goal is to jointly model surface wave dispersion, receiver functions, and characteristics of the waveform 
that appear in a window around the direct S arrival.  Optimization is done using a three part objective function given 
by 
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where a1, a2 and a3 are the relative weights of different data and p is the norm used to measure data misfit. The 
algorithm is very general in that the weights can change with iteration and p can take different values for the three 
different parts of the objective function. Note that the same model is used to compute synthetic waveforms, surface 
wave dispersion and receiver functions. Forward modeling is done using a reflectivity algorithm and optimization is 
carried out using an algorithm called very fast simulated annealing (VFSA). The code runs efficiently on multiple 
processors using MPI routines. In the project’s first year we coded the algorithm, validated the implementation, and 
performed synthetic tests to confirm the method’s effectiveness and tractability and to demonstrate the usefulness of 
associated model assessment tools.  

In the past year we conducted a broad search for shear-coupled PL waveforms among broadband seismic data 
available to us from the Middle East and discovered that this phase is quite rare in this region.  To generate SPL a 
low-velocity zone is required beneath the Moho; SPL is therefore observed most commonly in shield regions.  
Further, sources of large-magnitude, deep-focus earthquakes concentrate at epicentral distances of ~70°, distances 
for which the SPL wavetrain is interrupted after one or two cycles by the arrival of strong SKS phases.  
Nevertheless, the Sp and SsPmP phases are occasionally prominent and modeling their characteristics, including 
amplitude and arrival times relative to the direct S phase, can also constrain structural models of the Earth’s crust 
and uppermost mantle. 

We will show results of both synthetic tests and applications to real broadband data from the region and use 
assessment tools, including Posterior Probability Density (PPD) and model parameter correlation matrices, to show 
the advantages of joint modeling via forward modeling with simulated annealing.  These statistical tools allow us to 
evaluate the relative strength of constraints placed on model parameters by each type of data in addition to the 
portions of the model that are well, or poorly, constrained. In addition, we report on the development of a new 
MCMC method called Hamiltonian Monte Carlo (HMC) approach for joint inversion of surface wave dispersion and 
receiver function data. 
  



  

OBJECTIVES 
Our goal is to develop optimal procedures for the use of multiple datasets.  Due to the inherent variability, 

inconsistency, and peculiarities of disparate datasets and the well-known nonlinearity and non-uniqueness associated 
with geophysical modeling, such procedures must include methods for evaluating the performance and contribution 
of each dataset to the final results.   

We use quantitative assessment tools and a formal Bayesian approach to explore and evaluate each step of the 
modeling process, rather than to simply toss all constraints into a simultaneous fitting procedure to find the single 
solution that satisfies particular criteria.  The procedure we propose is best characterized as velocity analysis via 
optimization; it is analogous to velocity analysis in exploration seismology, rather than “inversion”.  It provides 
quantitative error measures of structural parameter estimates that can then be translated to earthquake location 
errors, and thus guide seismologists toward the most effective and efficient ways to improve model reliability. 

RESEARCH ACCOMPLISHED 
We have added an additional functional, S-wave Receiver Functions, to the three functionals considered 

previously.  Any of these four (P-wave receiver functions, surface wave dispersion, waveform modeling, and, now, 
S-wave Receiver Functions) can now be modeled individually or jointly via global optimization.  Our method also 
computes the Posterior Probability Density (PPD) function and correlation matrix, to evaluate the uniqueness of the 
resulting models, and the trade-offs between individual model parameters therein. 

The addition of S-wave Receiver Functions is significant for the region we are targeting (the Middle East) 
because our exhaustive search of available data turned up very few examples of shear-coupled PL and only a 
handful of examples of Sp and SsPmP phases with good signal-to-noise characteristics.  We have shown previously 
that shear-coupled PL provides helpful constraints on P velocities in the crust and uppermost mantle and on 
impedance contrasts across the Moho.  Sp and SsPmP can also help constrain the depth to Moho and P velocities in 
the crust.  The fact that these latter two have low SNR suggests that forming S-wave receiver functions and 
modeling those, perhaps after stacking, instead of the raw waveforms themselves, may be a fruitful approach.  
Deconvolving the vertical component from the radial, for example, will also remove systematic sources of noise and 
stacking can be expected to boost the SNR.   

Not finding SPL, however, is a significant drawback.  The reason for the dearth of SPL, particularly, probably 
has to do with upper mantle structure.  SPL typically requires a low-velocity zone beneath the Moho for strong 
propagation and such LVZs are more often found in older cratons, not in more tectonically active regions such as the 
Middle East.   For example, we previously applied the code to determine the crust and upper mantle structure 
beneath permanent broadband seismic stations in Africa using teleseismic earthquakes (M 5.5-7.0 and 200-800 km 
focal depth). We modeled the S, SP, SsPmP, and shear-coupled PL waves from these earthquakes and our P- and S-
wave velocity models compare well with, and in some cases improve upon the models obtained from other existing 
methods. We obtained P- and S-wave velocities simultaneously and our use of the shear-coupled PL phase wherever 
available improved constraints on the models of the lower crust and upper mantle (Gangopadhyay et al., 2007).  

In the past year we did, however, find a few examples in the broader region (Ethiopia and Cyprus) and our 
modeling efforts for stations in those regions are shown here.  Figure 1 displays the study area and locations of two 
stations DESE and GVD. We show results from full waveform inversion at these two stations in Figures 2 and 3. In 
each figure we show data fit, best model, marginal PPD and correlation plots. Note that at station DESE, we obtain 
good fit to the data and well-resolved layer parameters. On the other hand, at station SVD, data fit is poor and the 
correlation matrix shows significant off-diagonal values, indicating significant tradeoff between model parameters. 
In particular, we notice tradeoff between velocities and thicknesses of some of the layers. 

Joint Modeling of Multiple Datasets 
There are several advantages to jointly modeling multiple datasets.  First, each data functional has unique 

sensitivities to Earth structure.  For example, receiver functions are primarily sensitive to shear wave velocity 
contrasts and vertical travel times while surface wave dispersion measurements are sensitive to vertical shear wave 
velocity averages (Julia et al., 2000).  Full waveform modeling of S, Sp, SsPmP phases, in contrast, are more 
sensitive to compressional wave velocity contrasts and vertical travel times; adding SPL to the modeling improves 
senstivity to the uppermost mantle shear wave structure and to velocity contrasts across the Moho (Gangopadhyay et 
al., 2007).  The amplitudes and signal-to-noise characteristics of waves that produce these data functionals depend 
on several factors, including epicentral distance, event focal depth, fault mechanism and radiation patterns, source 
time function, properties of the intervening Earth structure (including attenuation, low velocity zones, velocities, 
heterogeneity, and anisotropy), and characteristics of the recording seismometer.  Since regions of high seismicity 



  

are highly restricted, many stations are not well situated to record a appropriate events.  An algorithm that 
incorporates multiple data types is more widely applicable than one that relies solely on a single type. 

 However, with these advantages come some disadvantages.  For example, combining disparate data types 
requires great care in their treatment and assessment (Roy et al., 2005).  Benefits of additional data may be null if 
the method used to model them preferentially fits one type.  Or, worse, minimizing an inappropriate criterion in 
conjunction with incompatible data may “split the difference” between them to choose a model that is wholly 
inaccurate and inappropriate for its intended purpose. If the model is to be used for regional or local earthquake 
locations, for example, it would be a mistake to rely on the best fit to surface wave dispersion.  The judgment and 
experience of seismologists who keep a clear eye on their goal is critical, and this experience must be combined with 
rigor in the computational modeling.  This experience and judgment can be incorporated after the fact, as is 
sometimes the case with, for example, the smoothing applied to 3D tomographic models but it is usually better to 
acknowledge the “prior” explicitly at the outset.  This is one advantage of the Bayesian approach that we propose 
here. While priors are sometimes referred to pejoratively as “bias”, their explicit statement during the formulation of 
the modeling algorithm forestalls serious criticism and enables a clear, quantitative discussion of “bias”. 

Next, as a general rule of thumb, a greater number of data functionals incorporated into modeling will result in 
a broader range of model parameter sensitivities, and it will be less likely that a linear inversion approach will be 
adequate.  This is unfortunate because linear approaches are much more tractable and straightforward than nonlinear 
methods.  But only a broad search of the model space will demonstrate whether a linear approach is valid.  Non-
linear global optimization algorithms require no change in the algorithm to include multi-part objective function 
with different norms. A variety of methods for nonlinear inversion are now available and the only real cost for 
conducting a thorough search and finding the single best-fitting model is in computational effort and complexity.  
The downside is that theoretically exact methods for assessing model uncertainties and model reliability are not 
generally tractable, and approximate methods result in significantly greater cost and complexity than is required to 
find the best-fitting model alone.  Nevertheless, our previous work has demonstrated that useful methods are indeed 
tractable, and the method we propose will add only marginal increases in computation time.   

While surface wave dispersion and receiver functions have been modeled jointly (Ammon et al., 2005; Ammon 
et al., 2004; Cakir and Erduran, 2004; Chang et al., 2004; Dugda and Nyblade, 2006; Herrmann et al., 2001; Julia et 
al., 2000; Julia et al., 2005; Lawrence and Wiens, 2004; Ozalaybey et al., 1997; Tkalcic et al., 2006), no study has, 
to our knowledge, incorporated waveform constraints such as S, Sp, SsPmP, and Shear-coupled PL.  Further, none 
has conducted a thorough, nonlinear assessment of the constraints provided by each functional.   

Multi-Objective Optimization (MOO) for Multiple Datasets 
The primary goal of our current project is to develop a tool for estimating crustal structure that can explain 

surface wave dispersion, receiver function and full waveform modeling. Thus our optimization algorithm is 
expected to minimize misfit of each of the datasets using three different objective or cost functions. The process of 
optimizing systematically and simultaneously a collection of objective functions is called multiobjective 
optimization (MOO) or vector optimization. The general MOO is posed as follows: 

[ ]1 2( ) ( ), ( ),..., ( ) ,TkMinimize F F F F=
m

m m m m  

where m is the model vector, and k is the number of objective functions. The objective function is minimized subject 
to some constraints. In our application, we use standard constraints such as bounds and negativity. 

Contrary to single-objective optimization, an MOO may be considered more of a concept than a definition. 
Typically, with noisy data there is no single global solution and it is often necessary to determine a set of points that 
all fit a predetermined definition for an optimum. This is commonly done using what is known as Pareto optimality 
(Pareto, 1906) defined as follows.  

Definition: A model m* belonging in the model space is said to be Pareto optimal if and only if there does not 
exist any other model m in the model space such that * *( ) ( ), and ( ) ( )i iF F F F≤ ≤m m m m  for at least one function. 

We often use a global criterion in search for models belonging to Pareto set, which is a scalar function that 
mathematically combines multiple objective functions; it may or may not involve preference of one or the other. 
Objective Function 

We use the following objective function which outputs a single scalar value. 
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This general objective function allows for different measures of error and different weights to the datasets. 

There are at least three fundamental issues that we need to address 
1. What measures of error do we use? Can they be different for different datasets? 
2. Can we use simple differences? 
3. How do we choose the three weights? 

Question (3) does not generally have a straightforward answer. The weights have to be determined by trial and error. 
One important consideration in defining the global objective function for MOO is to ascertain that no individual 
objective function introduces more impact than the others unless so desired. To address this, we use the following 
normalized objective function defined in Sen and Stoffa (1996) 
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where the sum is taken over all the data points and the parameter α is equivalent to norm. 
Initially we chose α=1 for all three objective functions. The objective function corresponding to the surface 

wave dispersion is smoothly varying, unlike those for the functionals thatdepend on the waveforms, and we 
therefore chose α=0.5 to introduce more sensitivity. With these choices of α values and normalized objective 
functions as defined in the above equation, we employ equal weights to all three parts of the objective function.

 

Optimization and Parallelization 
Having defined the objective function, we employ VFSA for optimization (Sen and Stoffa, 1996; Pulliam and 

Sen, 2005). Note that VFSA causes no difficulties since we do not require computing derivatives. As used in 
Pulliam and Sen (2005), we use a parallel optimization code for MOO as well. Note that the most expensive 
computation element is that of synthetic waveform by the reflectivity method and the reflectivity computations are 
therefore distributed over multiple nodes. Since surface wave dispersion and receiver function computations are 
fairly fast, we distribute those to one node each and thus achieve reasonable load balance. 

Incorporation of S-wave Receiver Functions into MOO Modeling Package 
Modeling S-to-P (commonly called “S-wave”) receiver functions (SRFs) can, in principle, incorporate many of 

the same constraints found in the broadband waveform windowed around the direct S arrival, including Sp and 
SsPmP.  Shear-coupled PL, however, would not be included in S-wave receiver functions, so one would forego the 
constraints they impose on the lower crust, uppermost mantle, and the impedance contrast across the Moho.  SPL is 
rarely observed in the Middle East, however, and an additional complication arises because the epicentral distance 
of the majority of events appropriate for such modeling (M 5.5-7.0 and 200-800 km focal depth,) are located at 
epicentral distances near 70°, at which distance SKS interferes with the SPL wavetrain. We prefer SPL observations 
to be in the range 30° ≤ Δ ≤ 60° so we can see, and model, several cycles of SPL.   

S-wave receiver functions, on the other hand, have reverse moveout compared to P-wave receiver functions, 
because S-to-P converted waves arrive before direct S.  This, combined with the minimization of source effects, due 
to deconvolution, and the possibility of stacking to improve signal-to-noise characteristics make SRFs attractive 
options for modeling jointly with the other three functionals, or in place of the waveform fitting if necessary.   Their 
arrivals avoid the interference by SKS described above and thus extend the range of useable epicentral distances and 
thus the quantity of useable data.  Adding SRFs as and additional modeling option therefore produces a more robust 
and more broadly applicable modeling package. 

We are in the process of incorporating S-wave receiver function modeling into our code and now have a 
subroutine that computes the SRF from a stack of layers and complementary pre-processing of observed data to be 
modeled.  When this addition is finalized we will be able to use the modeling assessment tools developed previously 
to quantify the strength of constraints imposed by each data functional on the model parameters. 

Development of a Hamiltonian Monte Carlo Modeling Technique 

We completed a new code that utilizes a combination of local and global searches, using the VFSA algorithm. 
The new code is computationally faster than a standalone VFSA and overcomes the primary limitation of the 



  

gradient-based inversion algorithm, that it fails to search the model space broadly, while benefiting from gradient-
based method’s greatest asset, its fast convergence to a solution. The approach, called Hamiltonian Monte Carlo 
Method (HMC), is a rigorous sampling algorithm that is able to draw samples from the PPD efficiently. The current 
version of the code includes surface wave dispersion and receiver functions only. The algorithm combines the 
random walk with a deterministic search based on local gradient of the cost function.  

Results from HMC inversion of surface wave dispersion and receiver function data are displayed in Figure 4. 
We generated synthetic surface wave dispersion and P-wave receiver functions for a simple six layer model. This 
dataset is then used as observation for optimization. Our models search parameters are Vs, Poisson’s ratio, density, 
and layer thickness for the six layers. We use search bounds for the model parameters as indicated  in Fig 4(c).  

Top left panel shows a fit between synthetic receiver function data and the data generated by the best fit model. 
Top right panel shows a fit between synthetic dispersion data (used as observation) and the data generated by the 
best fit model. Bottom left panel displays marginal PPDs for Vp and Vs – it also shows the search window used in 
this problem. The panel at bottom right shows a plot of posterior correlation matrix. The correlation matrix shows 
several significant off-diagonal elements. In particular, note high negative correlation between velocity and 
thickness of one of the shallow layers indicating that this layer is poorly resolved by the data 

CONCLUSIONS AND RECOMMENDATIONS 
We have developed a parallel VFSA-based multi-objective optimization code that can be used to obtain crustal 

velocity structures by modeling broadband waveform, receiver function, and surface wave dispersion data. The code 
has been applied successfully to synthetic examples and to stations from the broader Middle East region.  

In the past year the code has been extended to include a hybrid global/local search algorithm that combines the 
advantages of both methods: first searching the model space broadly in order to find the single best-fitting solution 
and also characterize the strength of constraints imposed by the data on model parameters and then refining the best-
fitting solution efficiently via local search.  A second innovation, not yet complete, is the addition of  S-wave 
receiver function modeling to the MOO package.  The option to model S-wave receiver functions can be used in 
addition to waveform modeling, or in its place when, for example, shear-coupled PL phases do not appear (so the 
constraints offered by this phase are not available) , epicentral distances are near 70° (so SKS interferes with SPL), 
source characteristics (such as moment tensor or depth or time function) are inaccurate), or the signal-to-noise ratio 
is poor. 

In the coming year we will complete the S-wave receiver function modeling, extend the HMC method to real 
data and apply the MOO modeling package to more realistic synthetics and data recorded in the Middle East.  
  



  

              
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Map of broadband seismic stations in the Middle East. 
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Figure 2. Station DESE: (a) Model obtained from inversion, (b) waveform fitting (data-blue, synthetic-
red), (c) correlation matrix, (d) PPD plot (S-wave velocity).    



  

 (a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b)                                                                           (c)          
                                               

 
 
 
 
 
 
 
 
 
 
 
                                                             (d)                              

 
 
 
 
 
 
 
 
            
 
 
 

Figure 3. Station GVD: (a) Model obtained from inversion, (b) waveform fitting (data-blue, synthetic-
red), (c) correlation matrix, (d) PPD plot (S-wave velocity).      



 

Figure 4. Results from HMC sampling application in joint inversion of surface wave dispersion and 
receiver function. Top left panel (a) shows a fit between synthetic receiver function data (used as 
observation) and the data generated by the best fit model. Top right panel (b) shows a fit between 
synthetic dispersion data (used as observation) and the data generated by the best fit model. (c)  The panel 
at bottom left displays marginal PPDs for Vp and Vs ; it also shows the search bounds used in this 
optimization problem. (d) The panel at bottom right shows a plot of posterior correlation matrix. 
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